US ERA ARCHIVE DOCUMENT # Risks Posed by Brines Containing Dissolved CO₂ #### Ron Falta¹, Larry Murdoch¹, and Sally Benson² Catherine Rupecht¹, Lin Zuo², Kirk Ellison¹, Chris Patterson¹, Shuangshuang Xie¹, Miles Atkinson¹, Laura Daniels¹, Qi Zheng¹ ¹Clemson University ²Stanford University January 7, 2013 # CO₂ Density and Solubility with Depth Calculated using TOUGH2-ECO2N assuming 35° C and 10,000 mg/l NaCl ## The high CO₂ solubility is significant - At 3000 ft depth, we get ~50 g/l (50 times more CO₂ than beer!) - When CO₂ dissolves, the aqueous phase becomes more dense (about 1% here) - Upward flow would require a caprock defect, and an upward hydraulic gradient > density difference Calculated using TOUGH2-ECO2N ### The Dissolved CO₂ is Secure – Or Is It? - Solubility trapping CO₂ dissolves in pore water (up to 60 g/l) - Density increase favors downward flow of CO₂ saturated brine - Upward flow would require a caprock defect, and an upward hydraulic gradient > 1% - However, if a CO₂ saturated brine moved upward, the CO₂ would come out of solution (exsolve), leading to a potentially mobile gas phase ## Outline - Experiments - Pore - Core - Relative permeability - Modeling - Fault - Wells - Dissolved and supercritical injection - Outcrop # Laboratory Micromodel Study (Zuo, Zhang, Falta, and Benson, AWR, 2013) Thin section micrograph of Mt. Simon sandstone Binary image used for micromodel Micromodel: 530 mD; PV=1.35 uL ### Micromodel - Initially fill micromodel with water saturated with dissolved CO₂ at 90 bars, 45 °C - Depressurize at a rate of 10 bars/hr - Images taken at 1 second intervals after onset of exsolution at 31 bars - CO₂ first starts to flow out at 23.5 bars, with a CO₂ phase saturation of 56% # Comparison of Exsolution and Supercritical CO₂ Injection ## Core Scale Experimental Setup **Dual-pump System** ### Mobility of exsolved gas (Zuo, Krevor, Falta, and Benson, TIMP, 2012) - Fill core with CO₂ saturated water at 124 bar, 50 °C - Depressurize to 27 bar at a rate of 12 bars/hr - CO₂ phase saturation reaches >40%, but very low mobility - No gravity redistribution after 11days. - CO₂ is mobile at 3% gas saturation during flood of the same core ### Relative permeability Mt. Simon Sandstone (15.7 mD, 23.9 % porosity) CO₂ phase injection #### CO₂ exsolution from brine ### Hysteretic CO₂ phase trapping - Core flood experiments where CO₂ saturation was cyclically increased and decreased to measure trapping - CO₂ saturation was measured by CT scan - Trapped CO₂ is a linear function of maximum CO₂ saturation New relative perm model for hysteretic CO₂ phase trapping - Simple approach: residual saturation a function of maximum saturation - Continuously update the max residual saturation - Allows use of existing relative permeability models $$k_{rg} = k_{rg \max} \sqrt{1 - \hat{S}_{w}} \left(1 - \hat{S}_{w}^{1/m} \right)^{2m}$$ $$\hat{S}_{w} = \frac{S_{w} - S_{wr}}{1 - S_{wr} - S_{gr}}$$ ### Modeling Open fault model using TOUGH2-ECO2N #### Model using regular core flood relative permeabilities. Time is 30 years. Gas phase CO₂ reaches the DWA, and spreads to the boundaries at 5000m within 30 years if the drawdown is maintained. #### Dissolved salt mass fraction Risks Posed by Brines Cont Murdoch, Benson, USEPA STA #### Model using exsolution relative permeabilities. Time is 30 years. X - Leakage much less using exsolution relative permeability - Related simulations for wells similar - In all cases, CO₂ migration stops when head imbalance is corrected, no runaway effect # Modeling ### CO₂ injection as dissolved or supercritical Formation: 300m thick, 20km x 20 km Slope: 0.008, 8m/1km Injection rate: 10 kg CO₂/s for 20 years Monitoring period: 30 years #### Properties: Typical of deep sandstone Stochastic distribution Hysteretic capillary and rel. perm functions # Modeling results CO₂ injection as dissolved or supercritical Supercritical - Similar areal footprints after injection ~10 km² - Supercritical CO₂ moves after injection, increasing area by 50% (14.9 km²) - Dissolved CO₂ sinks after injection, decreasing area contacting caprock (8.9 km²) ### Conclusions - Brine containing dissolved CO₂ can be mobilized upward by modest hydraulic gradients - As the carbonated brine is depressurized, the CO₂ comes out of solution (exsolves) throughout the pore space - The exsolved CO₂ phase has a very low relative permeability, even at high phase saturations. Exsolution relative permeability function - Hysteric relative permeability represented by updating residual saturation in standard models. Simple, fits data well. - Upward flow of brines containing dissolved CO₂ stops when the external driving force is removed, no runaway instability seen. - Injection of CO₂ as a dissolved phase is likely to have a similar "footprint" to supercritical CO₂ injection, less mobile after injection.